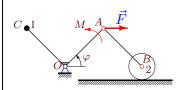
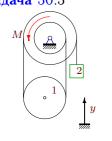
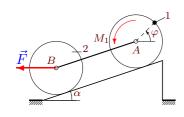

Уравнение Лагранжа (для экзаменов)


Кирсанов М.Н. **Решебник. Теоретическая механика**/Под ред. А. И. Кириллова. – М.:ФИЗМАТЛИТ, 2002. – 384 с. (с. 300.)

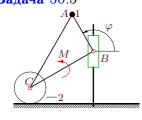
Задача 30.1


Цилиндр радиусом R прижимается скошенным прессом (призмой) к пластине, скользящей по гладкой горизонтальной поверхности. Масса пластины m_1 , призмы — m_2 . К цилиндру приложен момент M, к пластине — горизонтальная сила F. Проскальзывание в точках контакта цилиндра отсутствует. Составить уравнение движения системы. За обобщенную координату принять перемещение пластины x.

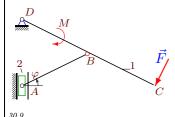
Задача 30.2


Стержни OC и OA жестко скреплены под углом 90° . В точке C расположена масса m_1 . Масса цилиндра — m_2 . К стержню OA приложен момент M. На шарнир A действует сила F. OA = OC = AB = a. Составить уравнение движения системы. За обобщенную координату принять φ .

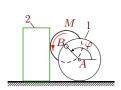
Задача 30.3


Нить, навитая на внутренний (радиус r) и внешний (радиус R) ободы невесомого блока, огибает цилиндр с подвижной осью. Масса цилиндра m_1 , радиус (R+r)/2, нити вертикальные. К свободному концу нити подвешен груз массой m_2 . Момент M приложен к блоку. Составить уравнение движения системы. За обобщенную координату принять высоту оси цилиндра y.

Задача 30.4

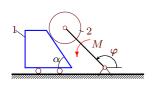

Два цилиндра катятся по плоскости, наклоненной под углом α . Точка массой m_1 расположена на ободе невесомого цилиндра A радиусом R. К оси цилиндра B радиусом R массой m_2 приложена горизонтальная сила F. Цилиндры соединены невесомым стержнем длины L. Момент M_1 приложен к цилиндру A. Составить уравнение движения системы. За обобщенную координату принять угол поворота φ цилиндра A.

Задача 30.5


Треугольная пластина шарнирно прикреплена к муфте, скользящей по вертикальной направляющей, и диску радиусом R. Масса точки на вершине A равна m_1 , масса диска — m_2 . AB=a, BC=b, $AB\perp BC$. Составить уравнение движения системы. За обобщенную координату принять φ .

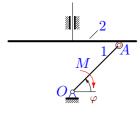
30.9

Стержень CD массой m_1 и стержень AB шарнирно соединены. AB=BC=BD=a. Масса ползуна, скользящего по вертикальной плоскости, равна m_2 . К стержню CD приложен момент M; сила F перпендикулярна CD. Составить уравнение движения системы. За обобщенную координату принять φ .


Задача 30.7

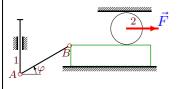
На ободе диска A радиусом R массы m_1 шарнирно закреплен диск B радиусом r. Диск A катится по горизонтальной поверхности, диск B — по боковой поверхности груза массой m_2 , скользящего по горизонтальной поверхности. К диску B приложен момент M. Составить уравнение движения системы. За обобщенную координату принять угол поворота диска $A \varphi$.

30.9

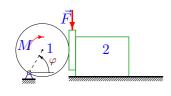

Задача 30.8

Груз массой m_1 движется на невесомых подшипниках по горизонтальной плоскости. По боковой поверхности груза катится диск радиусом r, закрепленный на стержне длиной 4r. К стержню приложен момент M. Масса диска m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня φ .

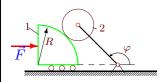
30.9


Задача 30.9

Кривошип OA=a массой m_1 приводит в движение вертикально движущийся поршень массой m_2 . Колесико A катается без сопротивления и без отрыва по нижней поверхности поршня. Размерами колесика пренебречь. Момент M приложен к OA. Составить уравнение движения системы. За обобщенную координату принять φ .

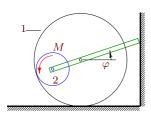

30.9

Задача 30.10



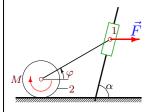
Стержень AB=a соединяет вертикальный поршень массой m_1 и горизонтально движущийся брусок. Цилиндр радиуса R массой m_2 катится по бруску и горизонтальной поверхности. К оси цилиндра приложена горизонтальная сила F. Составить уравнение движения системы. За обобщенную координату принять φ .

Задача 30.11


Цилиндр радиусом R массы m_1 , вращаясь вокруг оси, проходящей через его обод, находится в зацеплении с тонкой пластиной. Другой гранью пластина скользит без сопротивления по вертикальной грани бруска массы m_2 . Составить уравнение движения системы. За обобщенную координату принять φ .

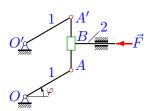
Груз массой m_1 движется на невесомых подшипниках по горизонтальной плоскости. По боковой цилиндрической поверхности груза радиусом R=4r катится диск радиусом r, закрепленный на стержне длиной 5r. К грузу приложена сила F. Масса диска m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня φ .

30.9


Задача 30.13

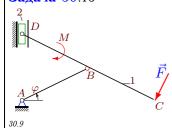
На оси обода радиусом R массой m_1 шарнирно закреплен стержень длиной L, скользящий одним концом по вертикальной плоскости. На другом конце стержня шарнирно закреплен диск радиусом r, катящийся по внутренней поверхности обода. К диску приложен момент M. Качение обода по горизонтальной плоскости происходит без проскальзывания. Масса диска m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня φ .

30.9

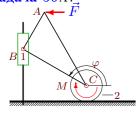

Задача 30.14

Муфта массой m_1 , скользящая по направляющей, наклоненной под углом α , шарнирно соединена невесомым стержнем с диском массой m_2 радиусом R. К диску приложен момент M, к муфте — горизонтальная сила F. Длина стержня a. Составить уравнение движения системы. За обобщенную координату принять φ .

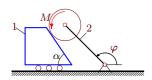
30.9


Задача 30.15

Шарнирный параллелограмм состоит из стержней OA, A'O' массой m_1 каждый и невесомого стержня AA'. К штоку приложена сила F. Общая масса муфты B и горизонтально движущегося штока равна m_2 ; OA = O'A' = a. Составить уравнение движения системы. За обобщенную координату принять φ .

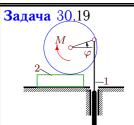

30.9

Задача 30.16

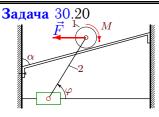


Стержень CD массой m_1 и стержень AB шарнирно соединены. AB=BC=BD=a. Масса ползуна, скользящего по вертикальной плоскости, равна m_2 . К стержню CD приложен момент M; сила F перпендикулярна CD. Составить уравнение движения системы. За обобщенную координату принять φ .

Задача 30.17

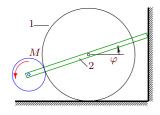


Треугольная пластина шарнирно прикреплена к муфте, скользящей по вертикальной направляющей, и диску радиусом R. Масса ползуна m_1 , диска — m_2 . AB=a, BC=b, $AB\perp BC$. Составить уравнение движения системы. За обобщенную координату принять φ .


Груз массой m_1 движется на невесомых подшипниках по горизонтальной плоскости. По боковой поверхности груза катится диск радиусом r, закрепленный на стержне длиной 5r. К диску приложен момент M. Масса стержня m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня φ .

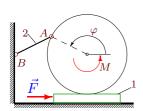
30.9

Вертикально движущийся поршень массой m_1 закреплен шарнирно на ободе диска радиусом R. Диск без проскальзывания катится по пластине, лежащей на гладкой плоскости. К диску приложен момент M. Масса пластины m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота диска φ .


30.9

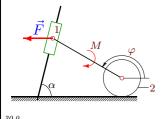
Диск массой m_1 радиусом R катится по наклонной балке. Стержень длиной L соединяет муфту, скользящую по горизонтальной направляющей, с осью диска. Момент M приложен к диску, сила F — к оси диска. Масса стержня m_2 . Составить уравнение движения системы. За обобщенную координату принять φ .

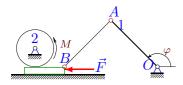
30.9


Задача 30.21

На оси цилиндра радиусом R массой m_1 шарнирно закреплен стержень длиной L, скользящий одним концом по вертикальной плоскости. На другом конце стержня шарнирно закреплен диск радиусом r, катящийся по внешней поверхности цилиндра. К диску приложен момент M. Качение цилиндра по горизонтальной плоскости происходит без проскальзывания. Масса стержня m_2 . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня φ .

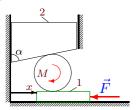
30.9


Задача 30.22


Точка A обода диска радиусом R соединена стержнем длиной R с неподвижным шарниром B, расположенным на одной высоте с центром диска. Диск катится без проскальзывания по пластине, расположенной на гладком основании. Масса пластины m_1 , масса стержня — m_2 . Момент M приложен к диску, горизонтальная сила F — к пластине. Составить уравнение движения системы. За обобщенную координату принять угол поворота диска φ .

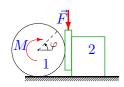
30.9

Задача 30.23


Муфта массой m_1 , скользящая по направляющей, наклоненной под углом α , шарнирно соединена невесомым стержнем с диском массой m_2 радиусом R. К стержню приложен момент M, к муфте — горизонтальная сила F. Длина стержня a. Составить уравнение движения системы. За обобщенную координату принять φ .

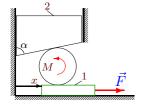
Тонкий брусок скользит по горизонтальной поверхности и приводит в движение цилиндр. Масса кривошипа $OA-m_1$, масса цилиндра радиусом $R-m_2$. К бруску приложена горизонтальная сила $F.\ AO=AB=a$. Составить уравнение движения системы. За обобщенную координату принять φ .

30.9


Задача 30.25

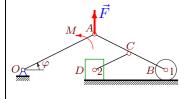
Цилиндр радиусом R прижимается скошенным прессом (призмой) к пластине, скользящей по гладкой горизонтальной поверхности. Масса пластины m_1 , призмы — m_2 . К цилиндру приложен момент M, к пластине — горизонтальная сила F. Проскальзывание в точках контакта цилиндра отсутствует. Составить уравнение движения системы. За обобщенную координату принять перемещение пластины x.

30.9


Задача 30.26

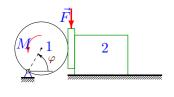
Цилиндр радиусом R массы m_1 катится по горизонтальной поверхности и находится в зацеплении с тонкой пластиной. Другой гранью пластина скользит без сопротивления по вертикальной грани бруска массы m_2 . Составить уравнение движения системы. За обобщенную координату принять φ .

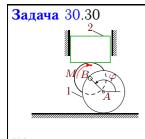
30.9


Задача 30.27

Цилиндр радиусом R прижимается скошенным прессом (призмой) к пластине, скользящей по гладкой горизонтальной поверхности. Масса пластины m_1 , призмы — m_2 . К цилиндру приложен момент M, к пластине — горизонтальная сила F. Проскальзывание в точках контакта цилиндра отсутствует. Составить уравнение движения системы. За обобщенную координату принять перемещение пластины x.

30 0


Задача 30.28


К стержню OA шарнирного механизма приложен момент M, к шарниру A – вертикальная сила F. Масса цилиндра m_1 , бруска — m_2 ; AO=AB=2a, AC=CD=a. Составить уравнение движения системы. За обобщенную координату принять φ .

30.9

Задача 30.29

Цилиндр радиусом R массы m_1 , вращаясь вокруг оси, проходящей через его обод, находится в зацеплении с тонкой пластиной. Другой гранью пластина скользит без сопротивления по вертикальной грани бруска массы m_2 . Составить уравнение движения системы. За обобщенную координату принять φ .

На ободе диска A радиусом R массы m_1 шарнирно закреплен диск B радиусом r. Диск A катится по горизонтальной поверхности, диск B — по нижней поверхности вертикально перемещающегося поршня массой m_2 . К диску B приложен момент M. Составить уравнение движения системы. За обобщенную координату принять угол поворота диска A φ .